FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis.

نویسندگان

  • Zachary Steinberg
  • Christopher Myers
  • Vernon M Heim
  • Colin A Lathrop
  • Ivan T Rebustini
  • Julian S Stewart
  • Melinda Larsen
  • Matthew P Hoffman
چکیده

Branching morphogenesis of mouse submandibular glands is regulated by multiple growth factors. Here, we report that ex vivo branching of intact submandibular glands decreases when either FGFR2 expression is downregulated or soluble recombinant FGFR2b competes out the endogenous growth factors. However, a combination of neutralizing antibodies to FGF1, FGF7 and FGF10 is required to inhibit branching in the intact gland, suggesting that multiple FGF isoforms are required for branching. Exogenous FGFs added to submandibular epithelial rudiments cultured without mesenchyme induce distinct morphologies. FGF7 induces epithelial budding, whereas FGF10 induces duct elongation, and both are inhibited by FGFR or ERK1/2 signaling inhibitors. However, a PI3-kinase inhibitor also decreases FGF7-mediated epithelial budding, suggesting that multiple signaling pathways exist. We immunolocalized FGF receptors and analyzed changes in FGFR, FGF and MMP gene expression to identify the mechanisms of FGF-mediated morphogenesis. FGFR1b and FGFR2b are present throughout the epithelium, although FGFR1b is more highly expressed around the periphery of the buds and the duct tips. FGF7 signaling increases FGFR1b and FGF1 expression, and MMP2 activity, when compared with FGF10, resulting in increased cell proliferation and expansion of the epithelial bud, whereas FGF10 stimulates localized proliferation at the tip of the duct. FGF7- and FGF10-mediated morphogenesis is inhibited by an MMP inhibitor and a neutralizing antibody to FGF1, suggesting that both FGF1 and MMPs are essential downstream mediators of epithelial morphogenesis. Taken together, our data suggests that FGFR2b signaling involves a regulatory network of FGFR1b/FGF1/MMP2 expression that mediates budding and duct elongation during branching morphogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis.

Heparan sulfate proteoglycans are essential for biological processes regulated by fibroblast growth factors (FGFs). Heparan sulfate (HS) regulates the activity of FGFs by acting as a coreceptor at the cell surface, enhancing FGF-FGFR affinity, and being a storage reservoir for FGFs in the extracellular matrix (ECM). Here we demonstrate a critical role for heparanase during mouse submandibular g...

متن کامل

miR-200c regulates FGFR-dependent epithelial proliferation via Vldlr during submandibular gland branching morphogenesis.

The regulation of epithelial proliferation during organ morphogenesis is crucial for normal development, as dysregulation is associated with tumor formation. Non-coding microRNAs (miRNAs), such as miR-200c, are post-transcriptional regulators of genes involved in cancer. However, the role of miR-200c during normal development is unknown. We screened miRNAs expressed in the mouse developing subm...

متن کامل

Semaphorin signaling facilitates cleft formation in the developing salivary gland.

Semaphorin signaling plays integral roles in multiple developmental processes. Branching morphogenesis is one such role that has not been thoroughly explored. Here, we show in mice that functional blockage of neuropilin 1 (Npn1) inhibits cleft formation in the developing submandibular gland (SMG) cultured ex vivo. This Npn1-dependent morphogenesis is mediated by Sema3A and Sema3C in an additive...

متن کامل

Retinoic acid signaling regulates KRT5 independently of stem cell markers in submandibular salivary gland epithelium

............................................................................................................. v List of Tables ..................................................................................................... ix List of Figures ..................................................................................................... x Chapter 1: Introduction ........................

متن کامل

Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 132 6  شماره 

صفحات  -

تاریخ انتشار 2005